
IICNet: A Generic Framework for Invertible Image Conversion
Supplementary Materials

Ka Leong Cheng*, Yueqi Xie*, Qifeng Chen
The Hong Kong University of Science and Technology
{klchengad, yxieay}@connect.ust.hk, cqf@ust.hk

1. Experimental Details

Each experiment is trained for 50K mini-batch iterations
using Adam [3] optimizer. We set the initial learning rate
to be 2 × 10−4 and halve the learning rate for every 10K
iterations. Generally, each experiment takes around 3 ∼ 4
days to train on a single RTX 2080 Ti GPU. In the remainder
of this section, we show some detailed experimental setups
for all the 5 RIC tasks discussed in our paper. Table 1 shows
a summary of training hyper-parameters.

1.1. Spatial-Temporal Video Embedding

We use the high-quality DAVIS 2017 video dataset in this
task, containing 150 video sequences of 480p resolution.
The official TrainVal, Test-Dev, Test-Challenge set contains
90, 30, and 30 video samples. Our train set contains all the
90 samples in the official TrainVal set plus the 15 samples
with odd indices (alphabetical order) in the official Test-Dev
set; our validation set contains the 15 samples with even in-
dices (alphabetical order) in the official Test-Dev set; our
test set contains the 30 samples in the official Test-Challenge
set.

For training, we subsample all the possible video sub-
samples with a time step of 5 between consecutive frames
using the middle frame as the reference image. Here, we
give a concrete example. The first subsample of a video
with embedding range N = 5 contains frame 0, 5, 10, 15,
20 of the original video, and frame 10 is selected as the ref-
erence image. Each subsampled video sequence is randomly
cropped with a resolution of 144×144 as input using a batch
size of 2. For testing, without specifications, the statistics
are reported by testing on all the possible video subsamples
with a time step of 1 at full resolution.

Since we find it is likely that the PSNR and SSIM values
reported in [10] are calculated using grayscale images, we
also offer grayscale PSNR and SSIM comparison here for
reference in Table 2.

*Joint first authors

1.2. Mononizing Binocular Images

The employed Flickr1024 dataset [7] contains 1, 024
binocular images of various categories. We follow the of-
ficial train and test splits. For training, the input binocular
images are randomly cropped with a resolution of 144×144
using a batch size of 2; for testing, we use the full resolution.

1.3. Embedding Dual-View Images

We train and test our method using the DIV2K
dataset [1], which consists of 800 training samples and 100
validation samples, where each sample is composed of a 2K
resolution image and corresponding ×2, ×4, ×8 bicubic
downsampled low-resolution images. We treat the first 750
official training samples as the train set, the remaining 50
samples as the validation set, and the 100 official validation
samples as the test set. The batch size we use for training
is 2. For each sample, we randomly crop the low-resolution
image with a size of 144×144 as the input normal-view im-
age and crop the high-resolution counter-party with the same
size according to the center content of the input normal-view
image as the input zoomed-view image, where the normal-
view image is the reference image. For testing, we test using
full resolution inputs.

1.4. Composition and Decomposition

The Adobe Matting dataset includes 49, 300 training
samples and 1, 000 testing samples. Each sample comprises
a foreground image, a background image, an alpha matting
for the foreground image, and a composed image. The Real
Matting dataset contains 57 videos with a corresponding
background image. Each video is captured by a handheld or
fixed camera with a person performing body motions in the
front. We manually annotate all the 57 video samples and
summarize that there are in total 17 different background
scenes, 13 different people wearing 28 different kinds of
clothes. Note that the manual annotation is available with
our released codes. We select samples with background id
12 as the validation set, samples with background id 1, 3,
10 as the test set, and the remaining samples as the train set.
Specifically, each sample is composed of a video frame and



Exp ID #Inputs Batch Size Input Res. Rel. Down #Blocks Lemb(λ1) Lfreq(λ2) Lres(λ3) Remark
st-01 5 2 144 3 7 10 1 0.001 3
st-02 5 1 144 7 7 30 1 0.001 3
st-03 5 2 144 3 7 10 1 0 3
st-04 7 2 144 3 7 10 1 0.001 3
st-05 9 2 144 3 7 10 1 0.001 3
st-06 3 2 144 3 3 10 1 0.001 0.4
st-07 5 2 144 3 3 10 1 0.001 0.4

mono-01 2 2 144 3 7 16 1 0.001 3
mono-02 2 1 144 7 7 24 1 0.001 3
mono-03 2 2 144 3 7 16 1 0 3
dual-01 2 2 144 3 7 10 1 0.001 3 × 2
dual-02 2 2 144 3 7 10 1 0.001 3 × 4
dual-03 2 2 144 3 7 10 1 0.001 3 × 8

adobe-01 3 1 256 3 7 10 1 0.001 3
real-01 2 1 256 3 7 10 1 0.001 3
hide-01 2 2 144 3 7 10 1 0.001 3
hide-02 3 2 144 3 7 10 1 0.001 3
hide-03 4 2 144 3 7 10 1 0.001 3
hide-04 5 2 144 3 7 10 1 0.001 3
hide-05 5 1 144 7 7 30 1 0.001 3
hide-06 5 2 144 3 7 10 1 0 3

Table 1: A summary of training hyper-parameters in different experiments.

Step
Embedding Restored

Zhu et al. [10] Ours Zhu et al. [10] Ours
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

1 32.657 0.8652 41.554 0.9754 35.877 0.9486 38.196 0.9606
3 31.452 0.8274 40.764 0.9689 34.828 0.9380 37.872 0.9583
5 30.978 0.8115 40.428 0.9662 34.405 0.9334 37.667 0.9570

Table 2: Comparison on Temporal Video Embedding test set with embeding range of 9 and time step of 1 in grayscale.

its corresponding background image. For both datasets, we
resize the input images as 256 × 256 during training using.
Considering the memory issue, all the testing samples are
first downsampled by 2 before testing.

1.5. Hiding Images in an Image

We use the Flicker 2W dataset [4], which selects 20, 745
high-quality and general images from Flickr.com. Since the
dataset images have different resolutions, we select 19, 531
images with both width and height greater than 576 px for
convenience. For training, the input images are first cropped
as a 576 × 576 square at random positions independently,
then they are concatenated and further applied random crop
to obtain 144 × 144 patches. The input images are cropped
as a 576× 576 square at the center for testing.

2. Additional Experiments

The main paper generally focuses on multiple-and-single
RIC tasks (conversion between multiple images and a sin-
gle embedding image). For single-and-single RIC tasks like
invertible colorization and invertible image rescaling, which
are also critical applications of the RIC family, we present
the results in Table 3 with the corresponding baseline meth-
ods [8, 9].

2.1. Invertible Grayscale

Similar to [8], we train and test our method using the
Visual Object Classes Challenge 2012 (VOC2012) dataset,
which contains 17, 125 color images in the dataset in to-
tal. We select the first 13, 758 images for training, and the
remaining images are used for testing. We train on ran-



Tasks Baseline Ours
PSNR SSIM PSNR SSIM

Grayscale 36.02 0.9681 39.81 0.9803
Rescaling 44.32 0.9908 41.77 0.9867

Table 3: Additional results on single-and-single RIC tasks.

domly cropped images with a resolution of 144 × 144 and
test on full resolution images. One particular thing for in-
vertible grayscale is that the input channel number is 3 (an
RGB image) and that the embedding channel number is 1
(a grayscale image). In this sense, this experiment further
demonstrates that our IICNet is indeed a generic framework
for different RIC tasks.

2.2. Invertible Image Rescaling

Similar to IRN [9], we train and test our method using
the DIV2K dataset [1], which consists of 800 training sam-
ples and 100 validation samples. We treat the official train-
ing samples as the train set and the 100 official validation
samples as the test set. We only train a model to build a con-
version between the high-resolution images and the corre-
sponding ×2 bicubic downsampled low-resolution images.
During training, the input images are randomly cropped with
a resolution of 144 × 144, and we do full resolution testing
on the final trained model.

3. Additional Results

3.1. Image Comparison

To better demonstrate both the quantitative and qual-
itative performance of our method over the baseline
method [10], we include more visual comparison results of
the embedding images in Figure 1 and the restored frames
in Figure 2.

3.2. Demo Video

We further make a demo video to show some visual re-
sults of our method on videos and GIF files. The demo
video contains mainly three parts. The first part is about
the spatial-temporal video embedding task, where our ap-
proach can embed high-resolution and high-fps videos into
low-resolution and low-fps ones. We obtain this by embed-
ding multiple high-resolution consecutive frames (a block of
frames) into one low-resolution frame in a block-by-block
manner. The second part is to embed small GIF files into
still images, in which we can restore a small GIF from a
single still embedding image. The last part is about mon-
onizing binocular videos to embed binocular left-and-right
videos into left-monocular ones, which is also performed in
a per-frame manner.

Range Embedding Restored
PSNR SSIM PSNR SSIM

11 37.097 0.9345 34.448 0.9342
13 36.874 0.9307 33.693 0.9232
15 36.665 0.9257 32.543 0.9080

Table 4: Ablation studies on different embedding ranges.

Setting Embedding Restored
PSNR SSIM PSNR SSIM

PR 37.585 0.9584 36.914 0.9540
PP 37.554 0.9578 37.079 0.9558
HR 37.377 0.9568 36.824 0.9541
HP 37.486 0.9575 36.972 0.9550

Table 5: Ablation studies on different settings of downscal-
ing layers and splitting strategies.

4. Additional Ablation Studies
4.1. Embedding Ranges

Due to memory limits, we can only conduct experiments
with up to 9 input images using a batch size of 2 and in-
put resolution of 144 during training. To further show the
robustness of our framework to embed more images, we re-
port experimental results of transforming multiple images
with embedding range N = 11, 13, 15 into one embedding
image. Results are shown in Table 4. Note that they are
trained using the same experimental setup as described in
Section 1, except that the batch size is 1.

4.2. Downscaling Layers and Splitting Strategies

We present an ablation study to investigate different
downscaling layers and splitting strategies in the invertible
downscaling modules.

For downscaling layers, we examine the pixel shuffling
layer (squeezing operation) [2] and the Haar wavelet trans-
formation layer [6]. Both offer an invertible operation to
halve the resolution of the input images. Letting the input
tensor as x ∈ RC×H×W , the downscaling layer transforms
the input tensor x from RC×H×W to R4C×H

2 ×W
2 . Specif-

ically, a pixel shuffling layer simply does pixel shuffling
by transforming each 2 × 2 square into the channel dimen-
sion with stride 2 spatially; a Haar Layer explicitly obtains
one low-frequency and three high-frequency decomposition
components by doing vertically and horizontally low-pass
and high-pass filtering, namely the approximation, horizon-
tal, vertical, and diagonal images.

We also examine two splitting strategies for the coupling
layers (top parts and bottom parts). One is the strategy we
present in our paper, denoted as “Ref”. which is to split



Zhu et al. [10] Ours

Figure 1: Visual result comparisons on embedding images. (Zoomed in for details.)

the input tensor of coupling layers into reference and non-
reference parts. Another is to split the input tensor according
to a proportion of 1 : 3, denoted as “Prop”, where the 1
means all the first sub-images for the pixel shuffling layer or
all the approximation images for the Haar layer; the 3 means
all the remaining sub-images for the pixel shuffling layer or
all the horizontal, vertical, and diagonal images for the Haar
Layer.

There are four different combinational settings for
Spatial-Temporal Video Embedding:

1) PR: pixel shuffling layer + “Ref”;
2) PP: pixel shuffling layer + “Prop”;
3) HR: Haar layer + “Ref”;
4) HP: Haar layer + “Prop”.

We train on the DAVIS 2017 video dataset [5] to embed
N = 3 frames into one 2 times lower-resolution image, with
a time step of 5. Note that the results are tested with a time
step of 1. The quantitative comparison results reported in
Table 5 show that there is no significant difference among
the choices of downscaling layers and splitting strategies.

5. Implementation Details

Our experiments use Dense Block as the basic bottle-
neck design, which consists of 5 densely connected Conv-
LeakyReLU layers with a channel growth rate of 32.

The relation module sequentially contains N indepen-
dent headers of Dense Block followed by a 1 × 1 Conv.,
N convolutional layers with 3 × 3 kernels for independent



Z
hu

et
al

.[
10

]
O

ur
s

G
T

Z
hu

et
al

.[
10

]
O

ur
s

G
T

Z
hu

et
al

.[
10

]
O

ur
s

G
T

Frame 1 Frame 3 Frame 5 Frame 7 Frame 9

Figure 2: Visual result comparisons on restored frames. (Zoomed in for details.)

transformation, and N independent tailers of a 1 × 1 Conv.
followed by a Dense Block, where the intermediate hidden
channel dimension is 64.

For the INN architecture, we use different number of
stacked invertible building blocks as described in Table 1,
where we use Dense Block as the basic bottleneck design
for the feedforward functions g, h1, h2 in coupling layers.

References
[1] Eirikur Agustsson and Radu Timofte. Ntire 2017 challenge

on single image super-resolution: Dataset and study. In
IEEE Conference on Computer Vision and Pattern Recogni-
tion Workshops, 2017. 1, 3

[2] Laurent Dinh, Jascha Sohl-Dickstein, and Samy Ben-
gio. Density estimation using real nvp. arXiv preprint



arXiv:1605.08803, 2017. 3
[3] Diederik P. Kingma and Jimmy Ba. Adam: A method for

stochastic optimization. In Proceddings of the International
Conference on Learning Representations, 2015. 1

[4] Jiaheng Liu, Guo Lu, Zhihao Hu, and Dong Xu. A unified
end-to-end framework for efficient deep image compression.
arXiv preprint arXiv:2002.03370, 2020. 2

[5] Jordi Pont-Tuset, Federico Perazzi, Sergi Caelles, Pablo Ar-
beláez, Alex Sorkine-Hornung, and Luc Van Gool. The 2017
davis challenge on video object segmentation. arXiv preprint
arXiv:1704.00675, 2018. 4

[6] Paul Viola and Michael Jones. Rapid object detection using
a boosted cascade of simple features. In Proceedings of the
IEEE Computer Society Conference on Computer Vision and
Pattern Recognition, volume 1, pages I:511–I:518, 2001. 3

[7] Yingqian Wang, Longguang Wang, Jungang Yang, Wei An,
and Yulan Guo. Flickr1024: A large-scale dataset for stereo
image super-resolution. In International Conference on Com-
puter Vision Workshops, pages 3852–3857, 2019. 1

[8] Menghan Xia, Xueting Liu, and Tien-Tsin Wong. Invert-
ible grayscale. ACM Transactions on Graphics (SIGGRAPH
Asia), 37(6):246:1–246:10, 2018. 2

[9] Mingqing Xiao, Shuxin Zheng, Chang Liu, Yaolong Wang,
Di He, Guolin Ke, Jiang Bian, Zhouchen Lin, and Tie-Yan
Liu. Invertible image rescaling. In Proceedings of the Euro-
pean Conference on Computer Vision, pages 126–144, 2020.
2, 3

[10] Qianshu Zhu, Chu Han, Guoqiang Han, Tien-Tsin Wong, and
Shengfeng He. Video snapshot: Single image motion expan-
sion via invertible motion embedding. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 2020. 1, 2, 3, 4,
5


