
Learning Naturally Aggregated Appearance for Efficient 3D Editing

Ka Leong Cheng1,2, Qiuyu Wang2, Zifan Shi1,2, Kecheng Zheng2,3, Yinghao Xu2,4,
Hao Ouyang1,2, Qifeng Chen1†, Yujun Shen2†

1HKUST 2Ant Group 3CAD&CG, ZJU 4Stanford

Reference

D
ra

w
in

g
S

ty
liz

at
io

n
E

xt
ra

ct
io

n

Edited Novel Views

Figure 1. AGAP aggregates 3D appearance as natural 2D canonical images. With 2D image processing tools, our method enables various
ways of 3D editing, including (a) scene stylization, (b) content extraction, and (c) interactive drawing, without further re-optimization.

Abstract

Neural radiance fields, which represent a 3D scene
as a color field and a density field, have demonstrated
great progress in novel view synthesis yet are unfavorable
for editing due to the implicitness. In view of such a
deficiency, we propose to replace the color field with an
explicit 2D appearance aggregation, also called canonical
image, with which users can easily customize their 3D
editing via 2D image processing. To avoid the distortion
effect and facilitate convenient editing, we complement the
canonical image with a projection field that maps 3D points
onto 2D pixels for texture lookup. This field is carefully
initialized with a pseudo canonical camera model and

†Corresponding author

optimized with offset regularity to ensure naturalness of
the aggregated appearance. Extensive experimental results
on three datasets suggest that our representation, dubbed
AGAP, well supports various ways of 3D editing (e.g., styl-
ization, interactive drawing, and content extraction) with
no need of re-optimization for each case, demonstrating its
generalizability and efficiency. Project page is available
at https://felixcheng97.github.io/AGAP/.

1. Introduction
While recent advancements in 3D representations like neu-
ral radiance fields (NeRF) [31] have shown impressive
reconstruction capabilities for real-world scenes, the need
for further progress in 3D editing arises as the desire to

1

https://felixcheng97.github.io/AGAP/


recreate and manipulate these scenes. The field of 3D
editing has witnessed significant development in recent
years. Traditional 3D modeling approaches [21, 42, 43,
55] typically rely on reconstructing scenes using meshes.
By combining meshes with texture maps, we can enable
appearance editing during the rendering process. How-
ever, these methods usually face difficulties in obtaining
detailed and regular texture maps, typically in complex
scenes, which significantly hinders effective editing and
compromises user-friendliness.

Recent neural radiance fields offer high-quality scene
reconstruction capabilities, but manipulating the implicit
3D representation embedded within neural networks is in-
herently complex and non-straightforward. Existing NeRF-
based editing approaches can be mainly divided into two
categories: some methods like [8, 9, 52, 56, 59, 63] target
geometry editing, usually taking advantage of meshes,
while the other [14, 24, 36, 60, 62] focuses on 3D stylization
using images or texts as style guidance. However, re-
optimizing the pre-trained NeRF models is necessary to
incorporate the desired editing effects into the underlying
3D representation, resulting in time-consuming processes.
Consequently, it is crucial to develop a user-friendly frame-
work that can efficiently and effectively support various
edits within a single model.

In this paper, we introduce a novel editing-friendly rep-
resentation AGAP with naturally Aggregated Appearance,
consisting of a 3D density grid for geometry estimation and
a canonical image plus a projection field for appearance
or texture modeling. Our method attempts to link the
3D representation with a natural 2D aggregated canonical
representation. Concretely, a learnable canonical image
is designed as the interface for editing, which aggregates
the appearance by projecting the 3D radiance to a natural-
looking image by the associated projection field. To ensure
the naturalness of the aggregated canonical image with
strong representation capacity, the associated projection
field is carefully initialized by a pseudo canonical camera
model and complemented by a learned view-dependent
offset. The underlying 3D structure is modeled by an
explicit 3D density grid. After a scene is optimized through
volume rendering, AGAP supports various ways of 3D
editing in a user-friendly setting by applying different 2D
image processing tools on the canonical images without
re-optimization of the original model. We evaluate the
effectiveness of our method on three datasets, including
LLFF [30], Replica [13, 46], and Instruct-NeRF2NeRF [14]
in various editing tasks, which are scene stylization, content
extraction, and texture editing (i.e., drawing). Experimental
results further show that AGAP can achieve on-par perfor-
mance with NeRF [31] in terms of PSNR with a hash grid-
based projection field.

2. Related Work
Implicit 3D representation. 3D modeling [1, 15, 17,
19, 27, 45, 50, 51] is pivotal in computer graphics and
computer vision. Traditionally, explicit representations
such as voxels and meshes have been employed for 3D
shape modeling, but they often face challenges related to
detail preservation and limited flexibility in processing.
In contrast, implicit 3D representation like NeRF [31],
SDF [37, 52, 57], Occupancy Networks [29], describing
3D scenes through continuous implicit functions, excels in
capturing detailed geometry with improved fidelity. Many
further works aim at improving NeRF in terms of various
aspects, such as modeling capacity [2, 3], generative model-
ing [6, 12, 44, 53], and camera pose estimation [25, 26, 54].
In particular, methods like DVGO [47], Plenoxels [11],
InstantNGP [32], TensoRF [7] focus on improving the
convergence speed of volume rendering for 3D scenes by
modeling the geometry and appearance with explicit grid
representations. Our method leverages this technique for
our density grid and canonical image as well, enabling
efficient and rapid convergence of 3D modeling.
Neural scene editing. Existing research on NeRF editing
can be broadly categorized into two: one focuses on editing
the geometry [8, 9, 52, 56, 59, 63]; the other, known as
style-based editing [14, 24, 36, 60, 62], aims to achieve
scene stylization. Our research aligns with the latter
category. Many NeRF stylization methods [16, 33, 60] have
adopted techniques from 2D image stylization with style
loss and content loss on images for NeRF optimization.
While these methods can deliver 3D-consistent editing, they
are primarily limited to global texture modifications and
lack flexibility. Later, CLIP-NeRF [49] incorporates text
conditions by regularizing the CLIP embeddings of the
global scene with input prompts. Subsequent studies [24]
extract 2D features such as DINO [5, 34] for local editing.
Most recently, Instruct-Nerf2Nerf [14] proposes an iterative
approach to edit the input images using pre-trained diffu-
sion models [4] for underlying NeRF optimization. Despite
achieving high-fidelity editing results, these methods neces-
sitate optimization for each text prompt or reference image,
which is inefficient.
Neural atlases. Our work shares similar insights with
the research area of neural atlases [20, 35, 58], which
decompose videos into a canonical form with learned
deformations, thereby enabling consistent video editing.
Approaches such as neural layered atlases [20] employ
an implicit network to distinguish foreground and back-
ground movement, dividing them into distinct layers. The
CoDeF [35] methodology represents 2D videos using con-
tent deformation fields by integrating 3D hash tables [32].
However, these approaches lack 3D priors, limiting the
effectiveness of 3D viewpoint changes in 3D scene editing.

2



Query

Direction: d 

Position:     

Projection 

field:

D
ra
w
in
g

S
ty
li
za
ti
o
n

Extraction

P

pxyz

 

Color: c

Density: 

Canonical image: ICanonical image: I

Density grid: GDensity grid: G

Figure 2. The overall pipeline. AGAP consists of two components: (1) an explicit 3D density grid ϕG to estimate geometry for density
σ; (2) an explicit canonical image ϕI with an associated view-dependent projection field P to aggregate appearance for color c. By
performing 2D image processing on the canonical image, our method enables various editing (e.g., content extraction, interactive drawing,
and scene stylization) through volume rendering without the need for re-optimization.

3. Method

Formally, given a set of multi-view training images I,
our method models the scene appearance by an explicit
canonical image ϕI plus a corresponding implicit projection
field P inspired by [35, 38, 39]; the scene geometry is
estimated by an explicit 3D density grid ϕG. With such
a representation, one can render different views of the
scene through volume rendering. Our key property is
that by explicitly editing the canonical image ϕI , it can
propagate the edited appearance to the whole scene through
the projection field P without any further re-optimization.
An overview of our framework is shown in Fig. 2.

3.1. Preliminary

Volume rendering [18, 31] accumulates colors and densities
of the 3D points sampled along the camera rays to render
images. For a given camera ray r(t) = o + td denoted
by its origin o ∈ R3 and direction d ∈ R3, we sample N
points {r(ti)}Ni=1 along the ray defined by a sorted distance
vector t = [t1, ..., tN ]T ∈ RN .

NeRF [31] models the 3D scene implicitly and leverage
MLP networks to decode the density σi = MLP(r(ti)) and
the view-dependent color ci = MLP(r(ti),d) of a point
located at r(ti) on the ray with viewing direction d. To
render the image pixel Ĉ(r), we apply discretized volume
rendering by Max [28] along the N sampled ray points with

δi denoting the distance to the nearby sampled points:

Ĉ(r) =

N∑
i=1

Ti(1− exp(−σiδi))ci,where

Ti = exp(−
i−1∑
j=1

σjδj).

(1)

Training such MLPs for 3D radiance field modeling re-
quires observed images with known camera poses. Specifi-
cally, NeRF model is optimized by minimizing the average
L2 distance between the rendered pixel color Ĉ(r) and the
ground-truth pixel color C(r):

Lcolor =
1

|R|
∑
r∈R

∥∥∥Ĉ(r)− C(r)
∥∥∥2
2
. (2)

3.2. Model Formulation

Our representation disentangles the density and color of the
scene and uses different modalities for modeling.
Density. Similar to DVGO [47], we adopt a voxel-grid
representation to model the 3D density for an efficient
query. Given a particular query point pxyz ≜ r(ti) ∈ R3,
we can obtain the corresponding density σ ∈ R via a
trilinear interpolation, followed by a Softplus activation:

σ = Softplus(GridSample(pxyz, ϕG)), (3)

where ϕG denotes the one-channel voxel grid with learnable
parameter ϕg at a voxel resolution size of Nx × Ny × Nz .

3



Concerning the fact that in 3D reconstruction, textures are
applied to the surface of the mesh to provide visual details
such as colors, patterns, and material properties [17, 51],
we hope our model can obtain a coarsely accurate density
estimation to perceive the 3D geometry at the early training
stage, facilitating the subsequent learning of appearance
aggregation. Hence, we opt for an explicit voxel-grid rep-
resentation to achieve fast convergence instead of utilizing
an implicit MLP such as NeRF [31]. Such a choice is also
proven to be crucial by our experiments in Sec. 4.4.
Appearance. In order to empower explicit 3D editing ca-
pabilities, we formulate the color appearance by an explicit
canonical image ϕI ∈ RH×W×3 plus an associated view-
dependent implicit projection field P (·, ·) : (R3,R3) →
R2, where H and W represent the image height and width,
respectively. This formulation maps a given query point
pxyz in the 3D field with viewing direction d to the
projected 2D point puv on the canonical image ϕI .

The design of the projection field is crucial to achieving
naturalness and completeness in the learned canonical im-
age. We model the projection field P in a residual manner,
which consists of a non-learnable canonical projection
initialization Pc and a projection offset learning Po. The
canonical projection initialization Pc plays a significant role
in ensuring a natural-looking canonical image, while the
projection offset Po aims to address view-dependent effects
and handle occlusions present in complex scenes.

Specifically, the canonical projection initialization
Pc(·) : R3 → R2 projects the query 3D point pxyz,
to an initial 2D projection point p̃uv on the canonical
image. Further elaboration on the selection of an appro-
priate projection initializing function Pc will be provided
in Sec. 3.3. The projection offset ∆puv is modeled by Po

with parameter weights ϕP :

∆puv = Po(pxyz,d;ϕP ). (4)

For simplicity, we omit the 3D positional encoding γp of
pxyz and the viewing direction encoding γd of d in Eq. (4).
The final projection point puv can be derived as follows:

puv = p̃uv +∆puv = Pc(pxyz) + Po(pxyz,d;ϕP ). (5)

The projection point puv is then used to query the RGB
color c ∈ R3 from the canonical image ϕI via interpolation:

c = Sigmoid(GridSample(puv, ϕI)). (6)

3.3. Canonical Projection Initialization

Learning a good projection field P for 3D-to-2D projection
is indeed a non-trivial research challenge [10], particularly
for 360-degree inward-facing scenes [3, 31]. Thus, we
relax the 3D scene of interest in our approach, focusing on
forward-facing scenes [30] and outward-facing panorama

data [13]. The crucial step in achieving a natural-looking
canonical image as the aggregated appearance is to position
a pseudo canonical camera into the scene for a careful
canonical projection initialization as Pc.
Forward-facing data and NDC representation. Simi-
lar to NeRF, we utilize the normalized device coordinate
(NDC) space to model the real forward-facing captures.
In perspective projection, the 3D points in the truncated
pyramid frustum in camera (eye) coordinates are mapped
to a cube [−1, 1]3 in NDC space. The pseudo canonical
camera is defined as the average camera pose positioned at
the world origin. By doing so, the perspective projection
fp can map any given point pxyz in the world coordinates
to its corresponding NDC point (px′ , py′ , pz′) ≜ fp(pxyz).
The coordinate range of the voxel grid ϕG is defined by the
bounding box in NDC space. Please refer to the original
NeRF paper [31] for the detailed derivation of NDC.

One notable property of NDC is that for a ray r origin
from the camera center, the resulting projected camera ray
r′ in NDC space is always perpendicular to the x′y′ plane.
This implies that all points along r′ share identical values
for px′ and py′ . Leveraging this property, we can have a
simple and appropriate initialization for the projection field:

p̃u = px′ , p̃v = py′ , (7)

where we have the notation (p̃u, p̃v) ≜ p̃uv .
Panorama data and contracted representation. The
training images for panorama scenes are typically cap-
tured by cameras positioned around the global origin,
with outward-facing views covering a 360-degree field of
view. We choose to place the pseudo canonical camera at
the global origin and define the Equirectangular projected
image as a feasible canonical projection initialization.

Drawing inspiration from the smooth coordinate trans-
forms in [3, 40] for 360-degree inward-facing unbounded
data, we introduce a new contracted formulation fc specifi-
cally for outward-facing (unbounded) panorama scenes:

fc(x) =
x

∥x∥
(1− 1

∥x∥+ 1
), (8)

where x ∈ R3 is a 3D point in Euclidean space. This design
transforms the points in such a way that they are distributed
proportionally to the disparity in a unit sphere. Accordingly,
the voxel grid ϕG is a cube with range [−1, 1]3.

Using the contracted representation in Eq. (8), we have
(px′ , py′ , pz′) ≜ fc(pxyz). The canonical projection
initialization Pc from pxyz in 3D space to the 2D canonical
image pixel (p̃u, p̃v) ≜ p̃uv can be formulated as follows:

p̃u = tan−1(
py′

px′
) ∈ [−π, π],

p̃v = sin−1(pz′) ∈ [−π

2
,
π

2
].

(9)

4



Chinese ink painting

Forest

ARF [60] Ref-NPR [62] Ours Stylized Reference Reference View

Figure 3. Visual comparison of novel-view stylization results on the LLFF dataset given different reference images. Our method can
better preserve textural consistencies as highlighted in the figure.

3.4. Design and Regularization

Positional and hash encoding. The projection offset
in Eq. (4) employs Fourier positional encoding or multi-
resolution hash encoding to capture high-frequency infor-
mation. For γd, we specifically employ positional encod-
ing [48]; as for γp, we choose either positional encoding or
hash encoding [32]. The positional encoding is defined as
γpe(·) : R3 → R3×(1+2K) to encode 3-dimensional vector
x up to K frequencies as γpe(x) = [x, F1(x), ..., FK(x)],
where Fk(x) = [sin(2kx), cos(2kx)]; for hash encoding,
we have γh(·) : R3 → R3+DK to encode the vector x by
a K-resolution hash grid with D-dimensional feature per
layer as γh(x) = [x, H1(x), ...,HK(x)], where Hk(x) is a
D-dimensional feature vector interpolated by x at the k-th
resolution.
Anneal encoding. Motivated by Nerfies [38], the positional
or hash encoding can incorporate an optional annealing
learning strategy. To achieve this, we introduce a weight
factor wn

k = 1
2 (1− cos(αn

kπ)) for some encoded frequency
Fn
k or Hn

k at some training step n, such that we have
Fn
k (·) = wn

kFk(·) and

αn
k = min(max(

n−Ns

Ne −Ns
K − k, 0.0), 1.0), (10)

where Ns and Ne denote the start and end steps for anneal
encoding, respectively. The strategy aims to facilitate the
learning of low-frequency details and gradually incorporate
high-frequency bands as the training progresses.
Progressive training. Similar to [3, 31, 47], we apply
progressive scaling for our voxel grid ϕG and canonical
image ϕI for a coarse-to-fine learning process. At specific
scaling-up milestone steps, we increase the ϕG voxel count
by a factor of 2 and the ϕI pixel count by a factor of 4.
Projection regularization. In order to obtain a visually
natural canonical image ϕI , one important regularization is

to avoid the deviation from the perception by the defined
pseudo canonical camera. We find the following simple
regularization works well and stabilizes the training:

Luv = ∥∆puv∥22 . (11)

Total variation regularization. To mitigate floating den-
sities, we incorporate total variation regularization [41]
Ltv into the density grid ϕG. This regularization term is
particularly beneficial during the initial stages of training.
Optimization objective. The final optimization process of
our method to model the scene for efficient editing can be
formulated as follows:

ϕ∗
G, ϕ

∗
I , ϕ

∗
P = argmin

ϕG,ϕI ,ϕP

Lcolor + Luv + Ltv. (12)

4. Experiments
4.1. Experimental Setup

Datasets. The LLFF [30] dataset comprises 8 real-world
scenes, where each scene is accompanied by several train-
ing images captured by handheld cameras placed in a rough
grid pattern. We evaluate this dataset at a resolution of
1008× 756 after downscaling the images by a factor of 4.

The Replica [46] dataset is a collection of various high-
quality and high-resolution 3D reconstructions of indoor
scenes with clean and dense geometry. We evaluate the
14 panorama scenes as processed in SOMSI [13], where
each scene is rendered as a grid of equally spaced spherical
images at a resolution of 1024× 512.

The Instruct-NeRF2NeRF [14] dataset consists of 6
scenes captured in either an object-centric or forward-facing
manner. We leverage this dataset specifically to model and
edit forward-facing scenes that prominently feature human
subjects for qualitative evaluation.

5



Turn him into a clown Turn him into Superman

Haque et al. [14] Ours Reference Image Haque et al. [14] Ours Reference Image

Figure 4. Visual comparison of scene stylization results on the Instruct-NeRF2NeRF dataset given different text prompts.

N
ov

el
V

ie
w

s
C

an
on

ic
al

Im
ag

e

Pixel art style Reference‘'Frozen” film by Disney

Figure 5. More visualization of scene stylization results on the panorama Replica dataset given different text prompts.

Fo
re

gr
ou

nd
B

ac
kg

ro
un

d

DFFs [24] Ours Reference

Figure 6. Visual comparison of foreground and background
extraction results on the LLFF dataset.

Implementation details. Our 3D editing pipeline involves
a two-step process: training a per-scene reconstruction
model and subsequent explicit edits on the canonical image
ϕI for 3D scene editing. By default, we optimize a per-
scene model for 60k steps using the Adam optimizer [22]
with an initial learning rate of 0.1 for both the explicit
3D density grid ϕG and 2D canonical image ϕI , and a
learning rate of 0.001 for the implicit projection field P with
learnable parameter ϕP . All experiments are conducted and
tested on a single RTX A6000 GPU. For further details and
hyperparameters used in training different models, please
refer to the supplementary materials.

4.2. Evaluation on Editability

By performing explicit edits on the canonical image ϕI ,
our model is capable of propagating the editing effects
through the learned projection field P . This enables various
3D scene editing functionalities, such as scene stylization,
context extraction, and texture editing. Specifically, except
for explicit texture editing, we leverage several state-of-the-
art models for 2D image editing. Specifically, we utilize
the prompt-guided ControlNet [61] for scene stylization and
Segment-anything (SAM) [23] for content extraction.
Scene stylization. We conduct a comparative analysis
between our method and three state-of-the-art styliza-
tion methods: ARF [60], Ref-NPR [62], and Instruct-
NeRF2NeRF [14]. All three baseline methods require ad-
ditional optimization processes to achieve stylization with a
specific style, somehow limiting their model practicability.
Specifically, ARF and Ref-NPR rely on one or multiple styl-
ized reference images, while Instruct-NeRF2NeRF utilizes
text prompts through Diffusion models [4] for guidance.

In Fig. 3, we demonstrate some comparing visualizations
evaluated on the LLFF dataset, where we can see that
both ARF and Ref-NPR cannot edit the 3D scene to be as
visually consistent as our method with respect to the given
reference style image. This behavior can be attributed to
ARF and Ref-NPR’s approach of adjusting NeRF model
weights through loss functions to fit the given style, re-
sulting in implicit control over the final edited style of the
scene. In contrast, by editing the explicit canonical RGB

6



(a) Multi-Object Extraction (b) Custom Object Extraction

(c) Complex Object Extraction (d) Extraction + Stylization

Figure 7. More visualization of content extraction results in different complex settings on the LLFF dataset.

Edited Novel View 1 Edited Novel View 2 Edited Novel View 3 Reference

Figure 8. Visualization of texture editing (i.e., drawing) results rendered at different novel viewpoints on the LLFF dataset.

image ϕI of our method, we can propagate the appearance
to the 3D color field through the projection function P ,
enabling explicit appearance control for editing. We further
showcase some visual results of the Instruct-NeRF2NeRF
dataset using different text prompts for the third baseline
in Fig. 4. Although both of our methods can successfully
edit the scene into the desired style, optimizing the NeRF
model using the Instruct-NeRF2NeRF method takes more
than 10 hours to achieve stationary performance, while
our method requires no extra re-optimization. Lastly, we
present more visual editing results on the panorama Replica
data in Fig. 5.

Content extraction. We evaluate our method with the
state-of-the-art DFFs [24] method, which enables NeRFs

to decompose a specific object given a text or image-patch
query. In Fig. 6, we show some comparing visualization of
foreground and background extraction. The evaluation of
baseline DFFs is only based on text query according to its
official codebase. As shown in Fig. 7, we demonstrate more
visualization with various extraction goals, including multi-
object extraction, custom-design content extraction, and
complex object extraction, and we can even do stylization
specifically on the extracted object.

Texture editing. We further present an additional appli-
cation to do textural appearance editing of the scene by
drawing or painting the canonical image. In Fig. 8, we can
observe that our method ensures both appearance and 3D
consistency in novel views.

7



Table 1. The reconstruction results on the LLFF dataset in terms of PSNR. Our PE-based models, which exhibit superior editing capacity,
demonstrate satisfactory performance, while our hash-based models achieve reconstruction comparable to NeRF [31] and DVGO [47].

Room Fern Leaves Fortress Orchids Flowers T-Res Horns Average
LLFF [30] 28.42 22.85 18.52 29.40 18.52 25.46 24.15 24.70 24.13
NeRF [31] 32.70 25.17 20.92 31.16 20.36 27.40 26.80 27.45 26.50
DVGO [47] 31.43 25.08 21.03 30.47 20.37 27.59 27.17 27.56 26.34
Ours (PE) 30.22 22.77 19.96 29.15 18.39 26.38 25.85 25.97 24.83
Ours (Hash) 32.10 24.13 20.64 30.12 20.10 27.47 27.24 27.81 26.20

Table 2. The reconstruction results on the Replica dataset.

PSNR ↑ SSIM ↑
SOMSI [13] 39.54 0.986
Ours (PE) 38.42 0.979
Ours (Hash) 38.68 0.976

4.3. Trade-off between Fidelity and Editability.

As a neural editing method without the need for re-
optimization, we compensate reconstruction quality for
editing capacity. In this section, we examine the reconstruc-
tion capacity of our method by trying different designs for
learning the projection offset Po, whose inputs are the query
3D position pxyz and its viewing direction d. Specifically,
our findings indicate that utilizing a positional encoding
(PE) for position leads to superior editing capacity, whereas
models with hash encoding exhibit higher reconstruction
performance compared to the PE-based models. The
corresponding PSNR results are shown in Tabs. 1 and 2.

4.4. Ablation Study

Additionally, we conduct ablation studies to evaluate the
effectiveness of different model components in terms of
both editability and reconstruction fidelity. Specifically,
we choose the trex scene in the LLFF dataset as our
evaluation. The corresponding reconstruction statistics in
terms of PSNR are shown in Tab. 3.
Explicitness and implicitness. Setting I and II replace
the explicit representation of the density grid ϕG and the
canonical image ϕI with implicit representations modeled
by MLP networks, respectively, where their statistical result
drop significantly. Moreover, in setting 1, it fails to learn
accurate geometries for reconstruction, and in setting 2,
it fails to learn a satisfying canonical image for editing
purposes. Based on these findings, we decide to utilize
explicit representations for both the density grid ϕG and the
canonical image ϕI .
Canonical projection initialization. Setting III ablates
the canonical projection initialization Pc. The performance
without Pc is quite tricky, where the PE-based model
experiences a drop while the hash-based model shows an
increase. Nonetheless, both models lose the ability to

Table 3. Ablation studies of model components on trex scene.

Settings PE Hash
I. Implicit density grid ϕG 19.29 18.22
II. Implicit canonical image ϕI 22.53 22.17
III. No initialization Pc 23.18 27.56
IV. No offset Po 23.81 23.88
V. No viewdir in offset Po 25.50 26.76
Full model 25.85 27.24

perform editing tasks as the learned canonical images ϕI

deviate from natural images to latent color maps.

Learnable projection offset. In Setting IV, the removal
of view-dependence from the learnable projection offset Po

leads to a minor decrease in performance, as the model no
longer considers viewing directions. In Setting V, where the
entire projection offset Po is eliminated, a significant drop
in performance is observed. More visual analyses are shown
in the supplementary materials.

5. Discussion and Conclusion

The key to aggregating 3D appearance as an image for
editing is to find a natural mapping from 3D points to 2D
pixels. While such a mapping is non-trivial when it comes
to 360-degree inward-facing scenes, and hence we mainly
explore the potential of our method with forward-facing
and panorama outward-facing data. As the field of neural
scene representation progresses, we anticipate future work
can successfully address this issue.

In summary, we propose AGAP, an editing-friendly
and efficient solution for neural 3D scene editing.
We leverage an explicit 2D appearance aggregation
to replace the color field in NeRFs. Such a design
allows users to directly perform 2D edits on images,
eliminating the need for dealing with geometries or
implicit fields, thus simplifying the editing process. Our
approach showcases superior editing results on multiple
datasets without any laborious re-optimization procedure.

8



References
[1] Panos Achlioptas, Olga Diamanti, Ioannis Mitliagkas, and

Leonidas J. Guibas. Learning representations and generative
models for 3d point clouds. In Proceedings of ICML, 2018.
2

[2] Jonathan T. Barron, Ben Mildenhall, Matthew Tancik, Peter
Hedman, Ricardo Martin-Brualla, and Pratul P. Srinivasan.
Mip-nerf: A multiscale representation for anti-aliasing neu-
ral radiance fields. In Proceedings of ICCV, 2021. 2

[3] Jonathan T. Barron, Ben Mildenhall, Dor Verbin, Pratul P.
Srinivasan, and Peter Hedman. Mip-nerf 360: Unbounded
anti-aliased neural radiance fields. In Proceedings of CVPR,
2022. 2, 4, 5, 13

[4] Tim Brooks, Aleksander Holynski, and Alexei A. Efros. In-
structpix2pix: Learning to follow image editing instructions.
In Proceedings of CVPR, 2023. 2, 6

[5] Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou,
Julien Mairal, Piotr Bojanowski, and Armand Joulin. Emerg-
ing properties in self-supervised vision transformers. In
Proceedings of ICCV, 2021. 2

[6] Eric R. Chan, Connor Z. Lin, Matthew A. Chan, Koki
Nagano, Boxiao Pan, Shalini De Mello, Orazio Gallo,
Leonidas J. Guibas, Jonathan Tremblay, Sameh Khamis,
Tero Karras, and Gordon Wetzstein. Efficient geometry-
aware 3d generative adversarial networks. In Proceedings
of CVPR, 2022. 2

[7] Anpei Chen, Zexiang Xu, Andreas Geiger, Jingyi Yu, and
Hao Su. Tensorf: Tensorial radiance fields. In Proceedings
of ECCV, 2022. 2

[8] Jun-Kun Chen, Jipeng Lyu, and Yu-Xiong Wang. NeuralEd-
itor: Editing neural radiance fields via manipulating point
clouds. In Proceedings of CVPR, 2023. 2

[9] Yu Deng, Jiaolong Yang, and Xin Tong. Deformed implicit
field: Modeling 3d shapes with learned dense correspon-
dence. In Proceedings of CVPR, 2021. 2

[10] Mathieu Desbrun, Mark Meyer, and Pierre Alliez. Intrinsic
Parameterizations of Surface Meshes. Computer Graphics
Forum, 2002. 4

[11] Sara Fridovich-Keil, Alex Yu, Matthew Tancik, Qinhong
Chen, Benjamin Recht, and Angjoo Kanazawa. Plenoxels:
Radiance fields without neural networks. In Proceedings of
CVPR, 2022. 2

[12] Jiatao Gu, Lingjie Liu, Peng Wang, and Christian Theobalt.
Stylenerf: A style-based 3d aware generator for high-
resolution image synthesis. In Proceedings of ICLR, 2022.
2

[13] Tewodros Habtegebrial, Christiano Couto Gava, Marcel
Rogge, Didier Stricker, and Varun Jampani. SOMSI: spher-
ical novel view synthesis with soft occlusion multi-sphere
images. In Proceedings of CVPR, 2022. 2, 4, 5, 8, 13

[14] Ayaan Haque, Matthew Tancik, Alexei A. Efros, Aleksander
Holynski, and Angjoo Kanazawa. Instruct-nerf2nerf: Edit-
ing 3d scenes with instructions. In Proceedings of ICCV,
2023. 2, 5, 6, 13

[15] Po-Han Huang, Kevin Matzen, Johannes Kopf, Narendra
Ahuja, and Jia-Bin Huang. Deepmvs: Learning multi-view

stereopsis. In Proceedings of CVPR, pages 2821–2830,
2018. 2

[16] Yihua Huang, Yue He, Yu-Jie Yuan, Yu-Kun Lai, and Lin
Gao. Stylizednerf: Consistent 3d scene stylization as stylized
nerf via 2d-3d mutual learning. In Proceedings of CVPR,
2022. 2

[17] Mengqi Ji, Juergen Gall, Haitian Zheng, Yebin Liu, and Lu
Fang. Surfacenet: An end-to-end 3d neural network for
multiview stereopsis. In Proceedings of ICCV, 2017. 2, 4

[18] James T. Kajiya and Brian Von Herzen. Ray tracing volume
densities. In Proceedings of SIGGRAPH, pages 165–174,
1984. 3

[19] Angjoo Kanazawa, Shubham Tulsiani, Alexei A. Efros, and
Jitendra Malik. Learning category-specific mesh reconstruc-
tion from image collections. In Proceedings of ECCV, 2018.
2

[20] Yoni Kasten, Dolev Ofri, Oliver Wang, and Tali Dekel.
Layered neural atlases for consistent video editing. TOG,
40(6):210:1–210:12, 2021. 2

[21] Michael M. Kazhdan, Matthew Bolitho, and Hugues Hoppe.
Poisson surface reconstruction. In Proceedings of SGP,
2006. 2

[22] Diederik P. Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. In Proceedings of ICLR, 2015. 6,
12

[23] Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi
Mao, Chloé Rolland, Laura Gustafson, Tete Xiao, Spencer
Whitehead, Alexander C. Berg, Wan-Yen Lo, Piotr Dollár,
and Ross B. Girshick. Segment anything. CoRR,
abs/2304.02643, 2023. 6

[24] Sosuke Kobayashi, Eiichi Matsumoto, and Vincent Sitz-
mann. Decomposing nerf for editing via feature field
distillation. In Advances in NeurIPS, 2022. 2, 6, 7

[25] Chen-Hsuan Lin, Wei-Chiu Ma, Antonio Torralba, and Si-
mon Lucey. BARF: bundle-adjusting neural radiance fields.
In Proceedings of ICCV, 2021. 2

[26] Yen-Chen Lin, Pete Florence, Jonathan T. Barron, Alberto
Rodriguez, Phillip Isola, and Tsung-Yi Lin. inerf: Inverting
neural radiance fields for pose estimation. In Proceedings of
IROS, 2021. 2

[27] Fayao Liu, Chunhua Shen, Guosheng Lin, and Ian Reid.
Learning depth from single monocular images using deep
convolutional neural fields. TPAMI, 38(10):2024–2039,
2016. 2

[28] Nelson L. Max. Optical models for direct volume rendering.
TVCG, 1(2):99–108, 1995. 3

[29] Lars M. Mescheder, Michael Oechsle, Michael Niemeyer,
Sebastian Nowozin, and Andreas Geiger. Occupancy net-
works: Learning 3d reconstruction in function space. In
Proceedings of CVPR, 2019. 2

[30] Ben Mildenhall, Pratul P. Srinivasan, Rodrigo Ortiz Cayon,
Nima Khademi Kalantari, Ravi Ramamoorthi, Ren Ng, and
Abhishek Kar. Local light field fusion: practical view
synthesis with prescriptive sampling guidelines. TOG, 38
(4):29:1–29:14, 2019. 2, 4, 5, 8, 13

[31] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik,
Jonathan T. Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:

9



Representing scenes as neural radiance fields for view syn-
thesis. In Proceedings of ECCV, pages 405–421, 2020. 1, 2,
3, 4, 5, 8, 13

[32] Thomas Müller, Alex Evans, Christoph Schied, and Alexan-
der Keller. Instant neural graphics primitives with a multires-
olution hash encoding. TOG, 41(4):102:1–102:15, 2022. 2,
5, 13

[33] Thu Nguyen-Phuoc, Feng Liu, and Lei Xiao. Snerf: stylized
neural implicit representations for 3d scenes. TOG, 41(4):
142:1–142:11, 2022. 2

[34] Maxime Oquab, Timothée Darcet, Theo Moutakanni, Huy V.
Vo, Marc Szafraniec, Vasil Khalidov, Pierre Fernandez,
Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, Rus-
sell Howes, Po-Yao Huang, Hu Xu, Vasu Sharma, Shang-
Wen Li, Wojciech Galuba, Mike Rabbat, Mido Assran,
Nicolas Ballas, Gabriel Synnaeve, Ishan Misra, Herve Jegou,
Julien Mairal, Patrick Labatut, Armand Joulin, and Piotr Bo-
janowski. Dinov2: Learning robust visual features without
supervision. CoRR, arXiv/2304.07193, 2023. 2

[35] Hao Ouyang, Qiuyu Wang, Yuxi Xiao, Qingyan Bai, Juntao
Zhang, Kecheng Zheng, Xiaowei Zhou, Qifeng Chen, and
Yujun Shen. Codef: Content deformation fields for tempo-
rally consistent video processing. CoRR, abs/2308.07926,
2023. 2, 3

[36] Hong-Wing Pang, Binh-Son Hua, and Sai-Kit Yeung. Lo-
cally stylized neural radiance fields. CoRR, abs/2309.10684,
2023. 2

[37] Jeong Joon Park, Peter R. Florence, Julian Straub,
Richard A. Newcombe, and Steven Lovegrove. Deepsdf:
Learning continuous signed distance functions for shape
representation. In Proceedings of CVPR, pages 165–174,
2019. 2

[38] Keunhong Park, Utkarsh Sinha, Jonathan T. Barron, Sofien
Bouaziz, Dan B. Goldman, Steven M. Seitz, and Ricardo
Martin-Brualla. Nerfies: Deformable neural radiance fields.
In Proceedings of ICCV, pages 5845–5854, 2021. 3, 5, 13

[39] Keunhong Park, Utkarsh Sinha, Peter Hedman, Jonathan T.
Barron, Sofien Bouaziz, Dan B. Goldman, Ricardo Martin-
Brualla, and Steven M. Seitz. Hypernerf: a higher-
dimensional representation for topologically varying neural
radiance fields. TOG, 40(6):238:1–238:12, 2021. 3

[40] Christian Reiser, Richard Szeliski, Dor Verbin, Pratul P.
Srinivasan, Ben Mildenhall, Andreas Geiger, Jonathan T.
Barron, and Peter Hedman. MERF: memory-efficient radi-
ance fields for real-time view synthesis in unbounded scenes.
TOG, 42(4):89:1–89:12, 2023. 4

[41] Leonid Rudin, Stanley Osher, and Emad Fatemi. Nonlinear
total variation based noise removal algorithms. Physica D:
Nonlinear Phenomena, 60(1):259–268, 1992. 5

[42] Johannes L. Schönberger and Jan-Michael Frahm. Structure-
from-motion revisited. In Proceedings of CVPR, 2016. 2

[43] Johannes L. Schönberger, Enliang Zheng, Jan-Michael
Frahm, and Marc Pollefeys. Pixelwise view selection for
unstructured multi-view stereo. In Proceedings of ECCV,
2016. 2

[44] Katja Schwarz, Yiyi Liao, Michael Niemeyer, and Andreas
Geiger. GRAF: generative radiance fields for 3d-aware
image synthesis. In Advances in NeurIPS, 2020. 2

[45] Vincent Sitzmann, Justus Thies, Felix Heide, Matthias
Nießner, Gordon Wetzstein, and Michael Zollhöfer. Deep-
voxels: Learning persistent 3d feature embeddings. In
Proceedings of CVPR, 2019. 2

[46] Julian Straub, Thomas Whelan, Lingni Ma, Yufan Chen,
Erik Wijmans, Simon Green, Jakob J. Engel, Raul Mur-
Artal, Carl Yuheng Ren, Shobhit Verma, Anton Clarkson,
Mingfei Yan, Brian Budge, Yajie Yan, Xiaqing Pan, June
Yon, Yuyang Zou, Kimberly Leon, Nigel Carter, Jesus
Briales, Tyler Gillingham, Elias Mueggler, Luis Pesqueira,
Manolis Savva, Dhruv Batra, Hauke M. Strasdat, Renzo De
Nardi, Michael Goesele, Steven Lovegrove, and Richard A.
Newcombe. The replica dataset: A digital replica of indoor
spaces. CoRR, abs/1906.05797, 2019. 2, 5, 13

[47] Cheng Sun, Min Sun, and Hwann-Tzong Chen. Direct voxel
grid optimization: Super-fast convergence for radiance fields
reconstruction. In Proceedings of CVPR, pages 5449–5459,
2022. 2, 3, 5, 8, 13

[48] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia
Polosukhin. Attention is all you need. In Advances in
NeurIPS, pages 5998–6008, 2017. 5, 13

[49] Can Wang, Menglei Chai, Mingming He, Dongdong Chen,
and Jing Liao. Clip-nerf: Text-and-image driven manipula-
tion of neural radiance fields. In Proceedings of CVPR, 2022.
2

[50] Jinglu Wang, Bo Sun, and Yan Lu. Mvpnet: Multi-view
point regression networks for 3d object reconstruction from
A single image. In Proceedings of AAAI, 2019. 2

[51] Nanyang Wang, Yinda Zhang, Zhuwen Li, Yanwei Fu, Wei
Liu, and Yu-Gang Jiang. Pixel2mesh: Generating 3d mesh
models from single RGB images. In Proceedings of ECCV,
2018. 2, 4

[52] Peng Wang, Lingjie Liu, Yuan Liu, Christian Theobalt, Taku
Komura, and Wenping Wang. Neus: Learning neural implicit
surfaces by volume rendering for multi-view reconstruction.
In Advances in NeurIPS, 2021. 2

[53] Qiuyu Wang, Zifan Shi, Kecheng Zheng, Yinghao Xu, Sida
Peng, and Yujun Shen. Benchmarking and analyzing 3d-
aware image synthesis with a modularized codebase. In
Advances in NeurIPS, 2023. 2

[54] Zirui Wang, Shangzhe Wu, Weidi Xie, Min Chen, and
Victor Adrian Prisacariu. Nerf-: Neural radiance fields
without known camera parameters. CoRR, abs/2102.07064,
2021. 2

[55] Fanbo Xiang, Zexiang Xu, Milos Hasan, Yannick Hold-
Geoffroy, Kalyan Sunkavalli, and Hao Su. Neutex: Neural
texture mapping for volumetric neural rendering. In Pro-
ceedings of CVPR, 2021. 2

[56] Bangbang Yang, Chong Bao, Junyi Zeng, Hujun Bao, Yinda
Zhang, Zhaopeng Cui, and Guofeng Zhang. Neumesh:
Learning disentangled neural mesh-based implicit field for
geometry and texture editing. In Proceedings of ECCV,
2022. 2

[57] Lior Yariv, Jiatao Gu, Yoni Kasten, and Yaron Lipman.
Volume rendering of neural implicit surfaces. In Advances
in NeurIPS, 2021. 2

10



[58] Vickie Ye, Zhengqi Li, Richard Tucker, Angjoo Kanazawa,
and Noah Snavely. Deformable sprites for unsupervised
video decomposition. In Proceedings of CVPR. IEEE, 2022.
2

[59] Yu-Jie Yuan, Yang-Tian Sun, Yu-Kun Lai, Yuewen Ma,
Rongfei Jia, and Lin Gao. Nerf-editing: Geometry editing
of neural radiance fields. In Proceedings of CVPR, 2022. 2

[60] Kai Zhang, Nicholas I. Kolkin, Sai Bi, Fujun Luan, Zexiang
Xu, Eli Shechtman, and Noah Snavely. ARF: artistic
radiance fields. In Proceedings of ECCV, 2022. 2, 5, 6

[61] Lvmin Zhang and Maneesh Agrawala. Adding conditional
control to text-to-image diffusion models. In Proceedings of
ICCV, 2023. 6

[62] Yuechen Zhang, Zexin He, Jinbo Xing, Xufeng Yao, and
Jiaya Jia. Ref-npr: Reference-based non-photorealistic radi-
ance fields for controllable scene stylization. In Proceedings
of CVPR, 2023. 2, 5, 6

[63] Yanshu Zhang, Shichong Peng, Alireza Moazeni, and Ke Li.
PAPR: proximity attention point rendering. In Advances in
NeurIPS, 2023. 2

Appendix

A. Ablation Analysis
The ablation studies (settings I to V) presented in the main
paper are conducted for both PE and hash models on the trex
scene in the LLFF dataset. In this section, we supply the
ablation studies with more corresponding visual analysis,
offering more detailed insights. Specifically, we present
the reconstruction PSNR statistics in Tab. A1, which match
those reported in the main paper. For visual results, Fig. A1
shows the learned canonical image ϕI and the novel view-
point image with the pseudo canonical camera pose plus
its corresponding depth map for each ablation setting. The
last row results in Tab. A1 and Fig. A1 indicate that the PE
model achieves a satisfactory reconstruction and a superior
canonical image ϕI for explicit editing, whereas the hash
model excels in terms of reconstruction quality.
Setting I: Replace the explicit density grid ϕG with an
implicit one modeled by MLP networks. The learning rate
for the replaced implicit density field is set to 10−3. We
can see from Tab. A1 that the reconstruction qualities drop
significantly as they fail to learn correct depths as shown by
subfigure I-C and I-F in Fig. A1.
Setting II: Replace the explicit canonical image ϕI with an
implicit one modeled by MLP networks. The learning rate
for the replaced implicit canonical field is also configured to
be 10−3. Based on the findings in Tab. A1, the reconstruc-
tion performance of both the PE and hash models experi-
ences degradation of more than 3 dB and 5 dB, respectively.
Further examination of row II in Fig. A1 reveals that while
both models demonstrate satisfactory depth map learning
capabilities, they exhibit limited capacities to generate high-
quality canonical images for editing purposes.

Table A1. Ablation studies of model components on trex scene.
Same as in the main paper.

Settings PE Hash
I. Implicit density grid ϕG 19.29 18.22
II. Implicit canonical image ϕI 22.53 22.17
III. No initialization Pc 23.18 27.56
IV. No offset Po 23.81 23.88
V. No viewdir in offset Po 25.50 26.76
Full model 25.85 27.24

Setting III: Remove the canonical project initialization Pc

in the projection field P . Although in Tab. A1 for setting III,
we find that the PE model achieves satisfactory performance
and the hash model even performs better than our full hash
model in terms of PSNR, the learned canonical images
(i.e., subfigure III-A and III-D in Fig. A1) are optimized
to be latent color representations instead of natural images,
resulting in a loss of editability.
Setting IV: Remove the project offset Po in the projection
field P . Recall that the learned canonical image ϕI is
determined by placing a pseudo canonical camera at the
global origin. By comparing subfigure IV-A and Full-
A of the PE models, we can see that without having the
projection offset, the canonical image (subfigure IV-A) can-
not “look through” the foreground ceiling, sharing similar
behaviors as the canonical view (column B). However,
by adding the projection offset, we enable the capacity
of our method to handle occlusions. As demonstrated in
subfigure Full-A, the final canonical image ϕI generated by
our full models learns to naturally aggregate the occluded
background ceiling within the image by leveraging the
projection offsets from 3D points to 2D pixels. Please also
refer to the corresponding zoomed-in patches in Fig. A2.
Setting V: Remove view dependency in the projection
offset Po of the projection field P . The omission of viewing
directions as the input for projection offset Po, as observed
from the last two rows in Tab. A1 and Fig. A1, leads to
a marginal decrease in reconstruction quality and yields
slightly inferior canonical images.

B. Training Details
Our 3D editing pipeline involves a two-step process: (1)
we first train a per-scene reconstruction model using the
proposed AGAP representation, which includes an explicit
density grid ϕG, an explicit canonical image ϕI , and an
associated projection field ϕP ; (2) we can then perform
explicit 2D edits on the canonical image ϕI for 3D scene
editing, including scene stylization, content extraction, and
texture editing. All experiments, including training on vari-
ous scenes from different datasets, are conducted and tested
on a single RTX A6000 GPU, with specific hyperparameter

11



Column A Column B Column C Column D Column E Column F

PE
(I

)

H
as

h
(I

)

PE
(I

I)

H
as

h
(I

I)

PE
(I

II
)

H
as

h
(I

II
)

PE
(I

V
)

H
as

h
(I

V
)

PE
(V

)

H
as

h
(V

)

PE
(F

ul
l)

H
as

h
(F

ul
l)

Canonical Image ϕI Canonical View Canonical Depth Canonical Image ϕI Canonical View Canonical Depth

Figure A1. Visualization analysis of the ablation studies for both PE and hash models conducted on the trex scene in the LLFF dataset.
Columns A and D are the learned canonical image ϕI . Columns B and E are the rendered novel view images at the canonical position
(global origin) with the canonical pose (identity rotation). Columns C and F are the corresponding depth maps of the rendered novel views.
The zoomed-in patches for subfigure IV-A and Full-A are shown in Fig. A2.

IV: w.o. projection offset Po Full: w. projection offset Po

Figure A2. Zoomed-in patches of the canonical images ϕI

of the PE model with setting IV (subfigure IV-A) and our full
PE model (subfigure Full-A). Without the projection offset, the
canonical image fails to include the occluded background ceiling
information. Our full model can handle occlusion and naturally
aggregate the background ceiling inside the canonical image.

details outlined in Tab. A2.
Optimization. In the first stage, we employ the Adam

optimizer [22] to optimize a per-scene model for 60k steps
with an initial learning rate of 0.1 for both the explicit
3D density grid ϕG and 2D canonical image ϕI , and a
learning rate of 0.001 for the implicit projection field P
with learnable parameter ϕP . The optimization of the entire
model involves an objective function comprising three main
components: (1) an average L2 photometric loss Lcolor

between the rendered pixel color Ĉ(r) and the ground-
truth color C(r); (2) a projection regularization Luv aimed
at minimizing the projection offset ∆puv; and (3) a total
variation regularization applied to the density grid ϕG.
Weight factor. As stated in the main paper, the final
optimization process of our method to model the scene for
efficient editing can be formulated as follows:

ϕ∗
G, ϕ

∗
I , ϕ

∗
P = argmin

ϕG,ϕI ,ϕP

Lcolor + Luv + Ltv, (A1)

12



Table A2. Hyperparameters for training various scenes in the LLFF [30], Replica [13, 46], and InstructNeRF2NeRF (IN2N) [14] datasets.

Common PE Models Hash Models

Image Size
Weight Factor Direction d Position pxyz Position pxyz

λuv λtv Type K Anneal Type K Anneal Ns Ne Type D K Anneal

LLFF (768, -) 10−5 10−5 PE 4 % PE 8 ! 4000 8000 Hash 2 16 %

Replica (768, 1536) 10−1 10−4 PE 4 % PE 8 ! 4000 8000 Hash 2 16 %

IN2N (768, -) 10−5 10−5 PE 4 % PE 8 ! 4000 8000 Hash 2 16 %

where the second and the third terms are controlled by their
corresponding weight factors λuv and λtv , respectively. To
be specific, the weight factor λuv is set as 10−5 for forward-
facing scene and 10−1 for panorama scenes; the weight
factor λtv is set as 10−5 for forward-facing scene and 10−4

for panorama scenes. Note that for panorama data, we set
both the projection and total variation regularization to be
relatively large because the depths of indoor scenes in the
Replica dataset are sometimes ambiguous due to large walls
in the background, where the total variation term is disabled
after 20000 steps to learn depths in details.

Progressive training. Similar to [3, 31, 47], we apply
progressive scaling for our voxel grid ϕG and canonical
image ϕI for a coarse-to-fine learning process. By gradually
refining the resolution of both representations, we enable a
more detailed and comprehensive learning process.

At specific scaling-up milestone steps, we increase the
ϕG voxel count by a factor of 2 and the ϕI pixel count by
a factor of 4. For the forward-facing datasets (i.e., LLFF
and InstructNeRF2NeRF), the voxel grid ϕG is scaled up at
{2000, 4000, 6000, 8000} training steps and the canonical
image ϕI is scaled up at {8000, 16000} training steps. For
the panorama Replica dataset, the voxel grid ϕG is scaled up
at {2000, 4000, 6000, 8000, 10000, 12000, 14000, 16000}
training steps, and the canonical image ϕI is scaled up at
{4000, 8000, 12000, 16000} training steps.

Size of voxel grid ϕG and canonical image ϕI . After the
progressive scaling up, The final resolution of the voxel grid
ϕG is set as 384× 384× 256 for forward-facing scenes and
320× 320× 320 for panorama scenes.

In all the experiments, we set the final height HI of the
learnable explicit canonical image ϕI as 768. For panorama
data, the canonical image width WI is set to be 1536
according to the definition of Equirectangular projection.
For forward-facing data, the canonical image width WI is
adaptively calculated according to the width-height aspect
ratio of the training images and the computed bounding
box of the scene in NDC space. Denoting the bounding
box in NDC space as (x′

min, x
′
max) in x′ dimension,

(y′min, y
′
max) in y′ dimension, and (z′min, z

′
max) = (−1, 1)

in z′ dimension and the aspect ratio as rI , we can then

calculate the canonical image width as:

WI = HI × rI ×
x′
max − x′

min

y′max − y′min

. (A2)

Annealed positional and hash encoding. The projection
offset employs Fourier positional encoding [48] or multi-
resolution hash encoding [32] to capture high-frequency
information. Given an input vector x ∈ R3, the correspond-
ing encoding can be defined as follows:
• The positional encoding is defined as γpe(·) : R3 →
R3×(1+2K) to encode 3-dimensional vector x up to K
frequencies as γpe(x) = [x, F1(x), ..., FK(x)]. For
the k-th frequency of positional encoding, we have the
encoding function Fk(x) = [sin(2kx), cos(2kx)] ∈
R2×3.

• The hash encoding is defined as γh(·) : R3 →
R3+DK to encode the vector x by a K-resolution hash
grid with D-dimensional feature per layer as γh(x) =
[x, H1(x), ...,HK(x)]. For the k-th resolution hash grid
with D-dimensional feature at each layer, we have the
encoding function Hk(x) ∈ RD.

Motivated by Nerfies [38], the positional or hash encoding
can incorporate an optional annealing learning strategy.
Specifically, we introduce a weight factor wn

k = 1
2 (1 −

cos(αn
kπ)) for some encoded frequency Fn

k or Hn
k at some

training step n, such that we have Fn
k (·) = wn

kFk(·) or
Hn

k (·) = wn
kHk(·) and

αn
k = min(max(

n−Ns

Ne −Ns
K − k, 0.0), 1.0), (A3)

where Ns and Ne denote the start and end steps for anneal
encoding, respectively. The strategy aims to facilitate the
learning of low-frequency details and gradually incorporate
high-frequency bands as the training progresses.

For all the experiments, the encoding γd of direction d
specifically employs positional encoding γpe, where we set
K = 4 with the optional annealing learning strategy off.
Concerning the encoding γp of position pxyz , we choose
to use positional encoding γpe for PE models and hash
encoding γh for hash models, where we set K = 8 with
the annealed learning starting at training step Ns = 4000
and ending at Ne = 8000 for PE models, and we set D = 2
and K = 16 without the optional annealed learning strategy
for hash models.

13


	. Introduction
	. Related Work
	. Method
	. Preliminary
	. Model Formulation
	. Canonical Projection Initialization
	. Design and Regularization

	. Experiments
	. Experimental Setup
	. Evaluation on Editability
	. Trade-off between Fidelity and Editability.
	. Ablation Study

	. Discussion and Conclusion
	. Ablation Analysis
	. Training Details

